Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
大型语言模型已被证明可以使用少量学习来实现各种自然语言任务的出色表现,这大大减少了将模型调整到特定应用程序所需的特定任务培训示例的数量。为了进一步了解量表对少量学习的影响,我们培训了一个5400亿个参数,密集激活的变压器语言模型,我们称之为“途径”语言模型棕榈。我们使用Pathways在6144 TPU V4芯片上训练了Palm,这是一种新的ML系统,可在多个TPU POD上进行高效的训练。我们通过在数百种语言理解和产生基准的基准方面实现最先进的学习结果来证明扩展的持续好处。在这些任务中,Palm 540B实现了突破性的表现,在一系列多步推理任务上表现出色,超过了最新的最新表现,并且在最近发布的Big Benchmark上表现优于平均人类表现。大量的大型基础任务显示出与模型量表的不连续改进,这意味着当我们扩展到最大模型时,性能急剧增加。 Palm在多语言任务和源代码生成方面也具有很强的功能,我们在各种基准测试中证明了这一点。我们还提供了有关偏见和毒性的全面分析,并研究了训练数据记忆的程度,相对于模型量表。最后,我们讨论与大语言模型有关的道德考虑,并讨论潜在的缓解策略。
translated by 谷歌翻译
随着近期自然语言生成(NLG)模型的各种应用程序的改进,它变得必须具有识别和评估NLG输出是否仅共享关于外部世界的可验证信息的手段。在这项工作中,我们提出了一个归属于识别的来源(AIS)的新评估框架,用于评估自然语言生成模型的输出,当这种输出涉及外部世界时。我们首先定义AIS,并引入两级注释管道,用于允许注释器根据AIS指南适当地评估模型输出。通过人为评估研究,我们在三个代数据集(会话QA域中的两个中和总结一下,概括地验证了这种方法,表明AIS可以作为测量模型生成的语句是否支持基础来源的常见框架。我们释放人类评估研究指南。
translated by 谷歌翻译
深度学习培训是一个昂贵的过程,可广泛使用GPU,但并非所有模型训练都饱和现代强大的GPU。 Multi-Instance GPU(MIG)是NVIDIA引入的一项新技术,可以分区GPU,以更好地适合不需要所有内存和计算完整GPU的资源的工作负载。在本文中,我们研究了在深度学习工作负载下的三种尺寸工作负载下的MIG启用A100 GPU的性能,这些尺寸重点是使用Resnet模型进行图像识别培训。当在GPU允许的各种MIG实例上孤立运行时,我们还研究了这些工作负载的行为,此外还可以在同一GPU共同列入同类的同质实例上并行运行它们。我们的结果表明,当工作负载太小而无法孤立地利用整个GPU时,使用MIG可以显着改善GPU的利用率。通过并行训练多个小型型号,尽管每单位时间的时间增加了,但每单位时间的GPU可以执行更多的工作,导致$ \ sim $ \ sim $ 3倍吞吐量。相比之下,对于已经很好地利用了整个GPU的中型和大型工作量,MIG仅提供边际性能的改进。然而,我们观察到,使用单独的MIG分区并行的训练模型不会表现出强调具有MIG在现代GPU上具有功能的价值的干扰。
translated by 谷歌翻译
BERT4REC是基于变压器体系结构的顺序推荐的有效模型。在原始出版物中,Bert4Rec声称比其他可用的顺序推荐方法优越(例如Sasrec),现在经常将其用作顺序建议的最先进的基线。但是,并非所有随后的出版物都证实了这一结果,并提出了其他模型,这些模型被证明在有效性方面表现优于Bert4Rec。在本文中,我们会系统地回顾所有将Bert4Rec与另一个受欢迎的基于变压器的模型(即Sasrec)进行比较的出版物,并表明BERT4REC结果在这些出版物中不一致。为了了解这种不一致的原因,我们分析了BERT4REC的可用实现,并表明我们在使用默认配置参数时未能重现原始Bert4Rec出版物的结果。但是,与默认配置相比,如果训练更长的时间(最高30倍),我们可以用原始代码复制报告的结果。我们还根据拥抱面孔变压器库提出了自己的BERT4REC实施,我们证明了在3个OUT 4数据集中重复了最初报告的结果,同时需要减少95%的培训时间来收敛。总体而言,从我们的系统审查和详细的实验中,我们得出结论,Bert4Rec确实确实表现出了序列建议的最新有效性,但只有在经过足够的时间进行培训时。此外,我们表明,我们的实现可以通过调整拥抱面孔库中可用的其他变压器体系结构(例如,使用Deberta提供的散布注意力或更大的隐藏层大小参见Albert)。
translated by 谷歌翻译
许多现代的顺序推荐系统使用深层神经网络,可以有效地估计项目的相关性,但需要大量时间进行训练。慢速培训增加了费用,阻碍了产品开发时间表,并防止该模型定期更新以适应不断变化的用户偏好。培训这样的顺序模型涉及对过去的用户互动进行适当采样以创建现实的培训目标。现有的培训目标有局限性。例如,下一个项目预测永远不会将序列的开头用作学习目标,从而可能丢弃有价值的数据。另一方面,Bert4Rec使用的项目掩盖仅与顺序建议的目标无关。因此,它需要更多的时间来获得有效的模型。因此,我们提出了一个基于新颖的序列训练目标采样,以解决这两个局限性。我们将我们的方法应用于最近和最新的模型架构,例如Gru4Rec,Caser和Sasrec。我们表明,通过我们的方法增强的模型可以实现超过或非常接近bert4rec的状态的性能,但训练时间却少得多。
translated by 谷歌翻译
经典的机器学习范式需要在中心位置汇总用户数据,在该位置,机器学习实践者可以预处理数据,计算功能,调整模型并评估性能。这种方法的优点包括利用高性能硬件(例如GPU)以及机器学习实践者在深度数据分析中进行的能力以提高模型性能。但是,这些优势可能是为了支付数据隐私的费用。收集,汇总并存储在集中式服务器上以进行模型开发。数据集中构成风险,包括内部和外部安全事件的风险增加以及意外数据滥用。具有不同隐私的联合学习旨在通过将ML学习步骤带给用户的设备来避免服务器端集中化陷阱。学习是以联合方式完成的,每个移动设备都在模型的本地副本上运行一个训练循环。来自设备模型的更新通过加密通信和通过差异隐私发送到服务器,以改善全局模型。在此范式中,用户的个人数据仍在其设备上。令人惊讶的是,以这种方式培训模型培训的模型性能差异很小。但是,由于其分布式性质,异质计算环境和缺乏数据可见性,联邦学习带来了许多其他挑战。本文探讨了这些挑战,并概述了我们正在探索和测试的建筑设计解决方案,以在元评估中生产联合学习。
translated by 谷歌翻译
在过去的几十年中,现代工业过程研究了几种具有成本效益的方法,以提高半导体制造的生产率和产量。虽然在促进实时监控和控制方面发挥重要作用,但行业中的数据驱动的软传感器在增强了晶圆故障诊断的深度学习方法时提供了竞争优势。尽管各个领域的深度学习方法取得了成功,但它们倾向于在多变化的软感测数据域上遭受不良性能。为了缓解这一点,我们提出了一种用于晶圆故障诊断分类任务的软感应集合器(卷积式变压器),主要由多头卷积模块组成,可获得快速和轻量级操作的卷曲的益处,以及能力通过多头设计相同的变压器来学习强大的表示。另一个关键问题是传统的学习范式倾向于在嘈杂和高度不平衡的软感测数据上遭受低性能。为了解决这个问题,我们使用基于课程的课程的损失函数增强了我们的软感测符合子模型,这有效地在培训的早期阶段和困难的阶段中学习易于样本。为了进一步展示我们拟议的架构的效用,我们对希捷技术的晶圆制造过程的各种工具进行了广泛的实验,这些工具与这项工作一起分享。据我们所知,这是第一次提出了课程,为软感测数据提出了基于课程的软感测符合子架构,我们的结果表明未来在软传感研究领域的使用中有很强的承诺。
translated by 谷歌翻译
在大数据的时代,基于数据驱动的分类已成为智能制造业的基本方法,以指导生产和优化检查。实践中获得的工业数据通常是由软传感器收集的时间序列数据,这是高度非线性,非间断,不平衡和嘈杂的。大多数现有的软传感机器学习模型侧重于捕获串联内部时间依赖关系或预定义的序列间相关性,同时忽略标签之间的相关性,每个实例同时与多个标签相关联。在本文中,我们提出了一种基于曲线的新颖的曲线图,用于多变量时间序列分类噪声和高度不平衡的软感测数据。所提出的基层能够在光谱域中捕获串联串联和串联系列依赖项; 2)通过叠加由统计共生信息构建的标签图来利用标签相关性; 3)从文本和数值域中使用注意机制学习功能; 4)利用未标记的数据并通过半监督学习缓解数据不平衡。与其他常用分类器的比较研究在希捷软感测数据上进行,实验结果验证了我们提出的方法的竞争性能。
translated by 谷歌翻译